Product Code Database
Example Keywords: television -programming $42-144
barcode-scavenger
   » » Wiki: Pyrite
Tag Wiki 'Pyrite'.
Tag

The pyrite ( ), or iron pyrite, also known as fool's gold, is an with the 2 (iron (II) disulfide). Pyrite is the most abundant . Pyrite's metallic luster and pale brass-yellow give it a superficial resemblance to , hence the well-known nickname of fool's gold. The color has also led to the nicknames brass, brazzle, and brazil, primarily used to refer to pyrite found in .

(2025). 9780922152766, American Geological Institute. .

The name pyrite is derived from the πυρίτης λίθος (pyritēs lithos), 'stone or mineral which strikes fire',. in turn from πῦρ (pŷr), 'fire'.. In ancient Roman times, this name was applied to several types of stone that would create sparks when struck against ; Pliny the Elder described one of them as being brassy, almost certainly a reference to what is now called pyrite.

By Georgius Agricola's time, , the term had become a generic term for all of the .

Pyrite is usually found associated with other sulfides or in veins, , and , as well as in coal beds and as a replacement mineral in , but has also been identified in the of . Despite being nicknamed "fool's gold", pyrite is sometimes found in association with small quantities of gold. A substantial proportion of the gold is "invisible gold" incorporated into the pyrite. It has been suggested that the presence of both gold and is a case of coupled substitution but as of 1997 the chemical state of the gold remained controversial.


Uses
Pyrite gained a brief popularity in the 16th and 17th centuries as a source of in early , most notably the , where a sample of pyrite was placed against a circular file to strike the sparks needed to fire the gun.

Pyrite is used with and a form of made of by the of , as a traditional method of starting fires.

Pyrite has been used since classical times to manufacture copperas (ferrous sulfate). Iron pyrite was heaped up and allowed to weather (an example of an early form of ). The acidic runoff from the heap was then boiled with iron to produce iron sulfate. In the 15th century, new methods of such leaching began to replace the burning of sulfur as a source of . By the 19th century, it had become the dominant method.

Pyrite remains in commercial use for the production of , for use in such applications as the paper industry, and in the manufacture of sulfuric acid. Thermal decomposition of pyrite into FeS (iron(II) sulfide) and elemental sulfur starts at ; at around , pS2 is about .

(2025). 9788251919227, Tapir Academic Press. .

A newer commercial use for pyrite is as the material in brand non-rechargeable lithium metal batteries.

Pyrite is a semiconductor material with a of 0.95 . Pure pyrite is naturally n-type, in both crystal and thin-film forms, potentially due to sulfur vacancies in the pyrite crystal structure acting as n-dopants.

During the early years of the 20th century, pyrite was used as a mineral detector in receivers, and is still used by hobbyists. Until the matured, the crystal detector was the most sensitive and dependable detector available—with considerable variation between mineral types and even individual samples within a particular type of mineral. Pyrite detectors occupied a midway point between detectors and the more mechanically complicated perikon mineral pairs. Pyrite detectors can be as sensitive as a modern 1N34A detector.

(2025). 9780521835398, Cambridge University Press. .

Pyrite has been proposed as an abundant, non-toxic, inexpensive material in low-cost solar panels. Synthetic iron sulfide was used with to create the photovoltaic material. More recent efforts are working toward thin-film solar cells made entirely of pyrite.

Pyrite is used to make marcasite jewelry. Marcasite jewelry, using small faceted pieces of pyrite, often set in , has been made since ancient times and was popular in the .

(2025). 9780313335075, Greenwood Publishing Group. .
At the time when the term became common in jewelry making, "marcasite" referred to all iron sulfides including pyrite, and not to the orthorhombic FeS2 mineral which is lighter in color, brittle and chemically unstable, and thus not suitable for jewelry making. Marcasite jewelry does not actually contain the mineral marcasite. The specimens of pyrite, when it appears as good quality crystals, are used in decoration. They are also very popular in mineral collecting. Among the sites that provide the best specimens are Soria and provinces (Spain).

In value terms, ($47 million) constitutes the largest market for imported unroasted iron pyrites worldwide, making up 65% of global imports. China is also the fastest growing in terms of the unroasted iron pyrites imports, with a CAGR of +27.8% from 2007 to 2016.


Research
In July 2020 scientists reported that they have observed a voltage-induced transformation of normally pyrite into a material, which may lead to applications in devices such as solar cells or magnetic data storage.

Researchers at Trinity College Dublin, Ireland have demonstrated that FeS2 can be exfoliated into few-layers just like other two-dimensional layered materials such as graphene by a simple liquid-phase exfoliation route. This is the first study to demonstrate the production of non-layered 2D-platelets from 3D bulk FeS2. Furthermore, they have used these 2D-platelets with 20% single walled carbon-nanotube as an anode material in lithium-ion batteries, reaching a capacity of 1000 mAh/g close to the theoretical capacity of FeS2.

In 2021, a natural pyrite stone has been crushed and pre-treated followed by liquid-phase exfoliation into two-dimensional nanosheets, which has shown capacities of 1200 mAh/g as an anode in lithium-ion batteries.


Formal oxidation states for pyrite, marcasite, molybdenite and arsenopyrite
From the perspective of classical inorganic chemistry, which assigns formal oxidation states to each atom, pyrite and marcasite are probably best described as Fe2+S22−. This formalism recognizes that the sulfur atoms in pyrite occur in pairs with clear S–S bonds. These S–S units can be viewed as derived from hydrogen disulfide, H2S2. Thus pyrite would be more descriptively called iron persulfide, not iron disulfide. In contrast, , 2, features isolated sulfide S2− centers and the oxidation state of molybdenum is Mo4+. The mineral has the formula Fe. Whereas pyrite has S22− units, arsenopyrite has AsS3− units, formally derived from of arsenothiol (H2AsSH). Analysis of classical oxidation states would recommend the description of arsenopyrite as Fe3+AsS3−.
(1978). 9780521214896, Cambridge University Press.


Crystallography
Iron-pyrite FeS2 represents the prototype compound of the pyrite structure. The structure is cubic and was among the first crystal structures solved by X-ray diffraction. It belongs to the crystallographic Pa and is denoted by the Strukturbericht notation C2. Under thermodynamic standard conditions the a of stoichiometric iron pyrite FeS2 amounts to . The unit cell is composed of a Fe into which the ions are embedded. (Note though that the iron atoms in the faces are not equivalent by translation alone to the iron atoms at the corners.) The pyrite structure is also seen in other MX2 compounds of transition metals M and X = , , and . Certain with X standing for , and etc. are also known to adopt the pyrite structure.

The Fe atoms are bonded to six S atoms, giving a distorted octahedron. The material is a . The Fe ions are usually considered to be state (as shown by Mössbauer spectroscopy as well as XPS). The material as a whole behaves as a Van Vleck , despite its low-spin divalency.

The sulfur centers occur in pairs, described as . Reduction of pyrite with potassium gives potassium dithioferrate, KFeS2. This material features ferric ions and isolated sulfide (S2−) centers.

The S atoms are tetrahedral, being bonded to three Fe centers and one other S atom. The site symmetry at Fe and S positions is accounted for by point symmetry groups C3 i and C3, respectively. The missing at S lattice sites has important consequences for the crystallographic and physical properties of iron pyrite. These consequences derive from the crystal electric field active at the sulfur lattice site, which causes a polarization of S ions in the pyrite lattice. The polarisation can be calculated on the basis of higher-order Madelung constants and has to be included in the calculation of the by using a generalised Born–Haber cycle. This reflects the fact that the covalent bond in the sulfur pair is inadequately accounted for by a strictly ionic treatment.

Arsenopyrite has a related structure with heteroatomic As–S pairs rather than S-S pairs. Marcasite also possesses homoatomic anion pairs, but the arrangement of the metal and diatomic anions differs from that of pyrite. Despite its name, chalcopyrite () does not contain dianion pairs, but single S2− sulfide anions.


Crystal habit
Pyrite usually forms cuboid crystals, sometimes forming in close association to form raspberry-shaped masses called . However, under certain circumstances, it can form filaments or T-shaped crystals. Pyrite can also form shapes almost the same as a regular , known as pyritohedra, and this suggests an explanation for the artificial geometrical models found in Europe as early as the 5th century BC.The pyritohedral form is described as a dodecahedron with pyritohedral symmetry; Dana J. et al., (1944), System of mineralogy, New York, p 282


Varieties
(2), (2) and (2), as well as (2) are similar in their structure and belong also to the pyrite group.

is a nickel-cobalt bearing variety of pyrite, with > 50% substitution of 2+ for Fe2+ within pyrite. Bravoite is not a formally recognised mineral, and is named after the Peruvian scientist Jose J. Bravo (1874–1928). Mindat – bravoite. Mindat.org (2011-05-18). Retrieved on 2011-05-25.


Distinguishing similar minerals
Pyrite is distinguishable from native gold by its hardness, brittleness and crystal form. Pyrite fractures are very uneven, sometimes conchoidal because it does not cleave along a preferential plane. Native , or glitters, do not break but deform in a way. Pyrite is brittle, gold is malleable.

Natural gold tends to be anhedral (irregularly shaped without well defined faces), whereas pyrite comes as either cubes or multifaceted crystals with well developed and sharp faces easy to recognise. Well crystallised pyrite crystals are ( i.e., with nice faces). Pyrite can often be distinguished by the striations which, in many cases, can be seen on its surface. () is brighter yellow with a greenish hue when wet and is softer (3.5–4 on Mohs' scale). Pyrite on. Minerals.net (2011-02-23). Retrieved on 2011-05-25. (FeAsS) is silver white and does not become more yellow when wet.


Hazards
Iron pyrite is unstable when exposed to the conditions prevailing at the Earth's surface: iron pyrite in contact with atmospheric and water, or damp, ultimately decomposes into (, FeO(OH)) and (). This process is accelerated by the action of Acidithiobacillus bacteria which oxidize pyrite to first produce (), ions (), and release protons (, or ). In a second step, the ferrous ions () are oxidized by into () which also releasing ions and producing FeO(OH). These oxidation reactions occur more rapidly when pyrite is finely dispersed (framboidal crystals initially formed by sulfate reducing bacteria (SRB) in argillaceous sediments or dust from mining operations).


Pyrite oxidation and acid mine drainage
Pyrite oxidation by atmospheric in the presence of moisture () initially produces ferrous ions () and which dissociates into ions and , leading to acid mine drainage (AMD). An example of acid rock drainage caused by pyrite is the 2015 Gold King Mine waste water spill.


Dust explosions
Pyrite oxidation is sufficiently that underground in high-sulfur coal seams have occasionally had serious problems with spontaneous combustion. The solution is the use of buffer blasting and the use of various sealing or cladding agents to the mined-out areas to exclude oxygen.

In modern coal mines, dust is sprayed onto the exposed coal surfaces to reduce the hazard of . This has the secondary benefit of neutralizing the acid released by pyrite oxidation and therefore slowing the oxidation cycle described above, thus reducing the likelihood of spontaneous combustion. In the long term, however, oxidation continues, and the formed may exert crystallization pressure that can expand cracks in the rock and lead eventually to .


Weakened building materials
Building stone containing pyrite tends to stain brown as pyrite oxidizes. This problem appears to be significantly worse if any is present.Bowles, Oliver (1918) The structural and ornamental stones of Minnesota. Bulletin 663, United States Geological Survey, Washington. p. 25. The presence of pyrite in the aggregate used to make can lead to severe deterioration as pyrite oxidizes. In early 2009, problems with imported into the after Hurricane Katrina were attributed to pyrite oxidation, followed by microbial sulfate reduction which released gas (). These problems included a foul odor and of wiring.Angelo, William (28 January 2009) A material odor mystery over foul-smelling drywall. Engineering News-Record. In the United States, in Canada," Pyrite and your house, what home-owners should know " – – Legal deposit – National Library of Canada, May 2000 and more recently in Ireland,Shrimer, F. and Bromley, AV (2012) "Pyritic Heave in Ireland". Proceedings of the Euroseminar on Building Materials. International Cement Microscopy Association (Halle Germany) Homeowners in protest over pyrite damage to houses. The Irish Times (11 June 2011Brennan, Michael (22 February 2010) Devastating 'pyrite epidemic' hits 20,000 newly built houses. Irish Independent where it was used as underfloor infill, pyrite contamination has caused major structural damage. exposed to sulfate ions, or sulfuric acid, degrades by : the formation of expansive mineral phases, such as (small needle crystals exerting a huge crystallization pressure inside the concrete pores) and creates inner in the concrete matrix which destroy the hardened paste, form cracks and fissures in concrete, and can lead to the ultimate ruin of the structure. Normalized tests for construction aggregateI.S. EN 13242:2002 Aggregates for unbound and hydraulically bound materials for use in civil engineering work and road construction certify such materials as free of pyrite or marcasite.


Occurrence
Pyrite is the most common of sulfide minerals and is widespread in igneous, metamorphic, and sedimentary rocks. It is a common accessory mineral in igneous rocks, where it also occasionally occurs as larger masses arising from an sulfide phase in the original magma. It is found in metamorphic rocks as a product of contact metamorphism. It also forms as a high-temperature hydrothermal mineral, though it occasionally forms at lower temperatures.

Pyrite occurs both as a primary mineral, present in the original sediments, and as a secondary mineral, deposited during . Pyrite and commonly occur as replacement after in and other sedimentary rocks formed under environmental conditions. Pyrite is common as an accessory mineral in shale, where it is formed by precipitation from anoxic seawater, and coal beds often contain significant pyrite.

(2025). 9780195106916, Oxford University Press.

Notable deposits are found as lenticular masses in Virginia, U.S., and in smaller quantities in many other locations. Large deposits are mined at Rio Tinto in Spain and elsewhere in the Iberian Peninsula.


Cultural beliefs
In the beliefs of the Thai people (especially those in the south), pyrite is known as Khao tok , Khao khon bat Phra Ruang (ข้าวตอกพระร่วง, ข้าวก้นบาตรพระร่วง) or Phet na tang, Hin na tang (เพชรหน้าทั่ง, หินหน้าทั่ง). It is believed to be a that has the power to prevent evil, or demons.


Images
File:Bullypyrite2.jpg|As a replacement mineral in an from France File:Pyrite from Ampliación a Victoria Mine, Navajún, La Rioja, Spain 2.jpg|Pyrite from Ampliación a Victoria Mine, Navajún, La Rioja, Spain File:Pyrite-Tetrahedrite-Quartz-184642.jpg|Pyrite from the Sweet Home Mine, with golden striated cubes intergrown with minor tetrahedrite, on a bed of transparent quartz needles File:Pyrite-200582.jpg|Radiating form of pyrite File:Paraspirifer bownockeri.fond.jpg| in pyrite File:Fluorite-Pyrite-tmu38b.jpg|Pink fluorite perched between pyrite on one side and metallic galena on the other side File:Pyrite in pyrrhotite SEM image.png|SEM image of intergrowth of pyrite cuboctahedral crystals (yellow) and pyrrhotite (pinkish yellow)


See also
  • Iron–sulfur world hypothesis
  • Sulfur isotope biogeochemistry


Further reading
  • American Geological Institute, 2003, Dictionary of Mining, Mineral, and Related Terms, 2nd ed., Springer, New York, .
  • David Rickard, Pyrite: A Natural History of Fool's Gold, Oxford, New York, 2015, .


External links

Page 1 of 1
1
Page 1 of 1
1

Account

Social:
Pages:  ..   .. 
Items:  .. 

Navigation

General: Atom Feed Atom Feed  .. 
Help:  ..   .. 
Category:  ..   .. 
Media:  ..   .. 
Posts:  ..   ..   .. 

Statistics

Page:  .. 
Summary:  .. 
1 Tags
10/10 Page Rank
5 Page Refs
3s Time